Contents

Acknowledgement i						
Abstract						
1	Intr	Introduction				
	1.1	Two-dimensional materials	1			
	1.2	Graphene	2			
	1.3	Post-graphene materials	5			
		1.3.1 Silicene, germanene, and stanene	5			
		1.3.2 Transition metal dichalcogenides	6			
		1.3.3 Transition metal trichalcogenides and trihalides	10			
	1.4	Purpose of this thesis	11			
	1.5	Organization of this thesis	13			
2	Mo	del and method	14			
	2.1	Ab initio calculations	14			
		2.1.1 Density functional theory	14			
		2.1.2 Maximally localized Wannier function	16			
	2.2	Multiorbital Hubbard model	17			
		2.2.1 t_{2a} -orbital system	19			
		2.2.2 e_{a} -orbital system	21			
	2.3	Model analysis	21			
		2.3.1 Mean-field theory	22			
		2.3.2 Linear response theory	22			
3	Mu	tiple Dirac nodes in transition metal trichalcogenides	25			
	3.1	Introduction to this chapter	25			
	3.2	Details of <i>ab initio</i> calculations	27			
	3.3	Multiple Dirac nodes	28			
		3.3.1 Representative example: $PdPS_3$	28			
		3.3.2 Comparison with other group 10 TMTs	31			
	3.4	Effect of spin-orbit coupling	31			
	3.5	Tunable Dirac gap	34			
	3.6	Effect of electron interactions	35			
		3.6.1 Mean-field analysis	35			

Contents

	3.7	3.6.2 GGA calculations for magnetic solutions Effect of layer stacking	37 38 39 39
4	3.8 Eng met 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Summary of this chapter	43 44 45 46 50 51 52 53
5	Ant insu 5.1 5.2 5.3 5.4 5.5	iferromagnetic Kitaev-type interactions in polar spin-orbit Mott lators Introduction to this chapter Multiorbital Hubbard model on polar honeycomb structures Effective exchange interactions Ab initio estimate of exchange interactions for polar materials Summary of this chapter	58 58 59 61 64 70
6	Sun	nmary	71
\mathbf{A}	Win	ding numbers of Dirac point nodes in e_g -orbital systems	74
В	Effective Hamiltonian for quadratic band crossings in e_g -orbital systems		
С	Tota	al energy comparison by GGA calculations for Au trihalides	78
D	Kra	mers doublet in low-spin d^5 -electron configuration	79