Contents

1	Introduction 1				
	1.1	Geometrical frustration	1		
	1.2	Ice-rule local constraint	2		
	1.3	Purpose of this study	5		
	1.4	Organization of this thesis	6		
2	Me	etal insulator transition of charge frustrated systems	7		
	2.1	Introduction: transport phenomena in itinerant ice-rule systems	7		
		2.1.1 Manganite and Verwey transition	.7		
		2.1.2 Metal-insulator transition in molybdenum pyrochlore oxides			
		2.1.2 Metal-insulator transition in indiguation pyrochlore oxides	14		
	2.2	Model and method	6		
	2.2	2.2.1 Model	16		
		2.2.2 Arithmetic mean approximation within the ice-rule manifold	16		
		2.2.2 Lifting of the ground state degeneracy	18		
		2.2.4 Numerical calculations	9		
		2.2.5 Lattices	21		
	2.3	Results	21		
	2.0	2.3.1 Pyrochlore lattice	21		
		2.3.1 1 groundre lattice	25		
		2.3.2 Cincentrobuild lattice	20 20		
	2.4	Discussion	,₀ ₹3		
	$\frac{2.1}{2.5}$	Summary of this chapter	₹4		
	2.0		, 1		
3	Tra	ansverse-field Ising model on frustrated checkerboard lattice 3	7		
	3.1	Transverse-field Ising models on frustrated lattices	37		
		3.1.1 Triangular lattice	37		
		3.1.2 Checkerboard lattice	39		
	3.2	Model and method	10		
		3.2.1 Transverse-field Ising model on a checkerboard lattice	10		
		3.2.2 Quantum Monte Carlo method	1		
		3.2.3 Continuous-time algorithm	13		
		3.2.4 Loop algorithm and replica-exchange algorithm	14		
		3.2.5 Physical quantities and order parameters	14		
	3.3	Results and discussions	15		
		3.3.1 Effects of external fields in the case of $J_1 = J_2$ and $J_3 = 0$	15		
		3.3.2 Entropy driven Neel transition	18		
	3.4	Summary of this chapter	18		
4	Fe	rroelectric transition of squaric acid crystals 5	1		
-	4.1	Squaric acid crystal	۔ 1ز		
		4.1.1 Structure and key features: geometrical frustration and quantum fluctuation	- 51		
		4.1.2 Antiferroelectric transition	52		
		4.1.3 Effect of external pressure	<u>,</u> 53		
		4.1.4 Effect of deuteration	54		

	4.2	Theoretical models and previous studies	55		
		4.2.1 Pseudospin model	55		
		4.2.2 Vertex model: frustration in squaric acid crystal	57		
	4.3	Model and method	59		
		4.3.1 Model	60		
		4.3.2 Quantum Monte Carlo method	61		
	4.4	Results	62		
		4.4.1 Ferroelectric transition and crossover	62		
		4.4.2 Phase diagram	63		
	4.5	Discussion	63		
	4.6	Summary of this chapter	64		
5	Co	onclusion	67		
\mathbf{A}	A Exactly solvable models: the Husimi cacti				
в	Los	ss of residual entropy in the liquidlike ground state	70		